8.- Calculate the Weight of an Object

Calculating the weight of a sheet of material

Calculating the weight of a sheet of material is quite simple and involves calculating the area of the sheet and multiplying it by the density of the material corresponding to the thickness of the material (i.e., weight chart)

For calculating the area, you will need to multiply the length by the width of the material.

A= Length x Width

Once you have the area you will need to multiply by the density of the material corresponding to the thickness of the material (i.e., weight chart):

Weight = Area x Density corresponding to the thickness of the material (i.e., weight chart) Weight = Area (FT^2) x weight in LBS/FT²

For example, for a sheet of 1/8" steel measuring 3' x 5' 6" the calculated weight would be :

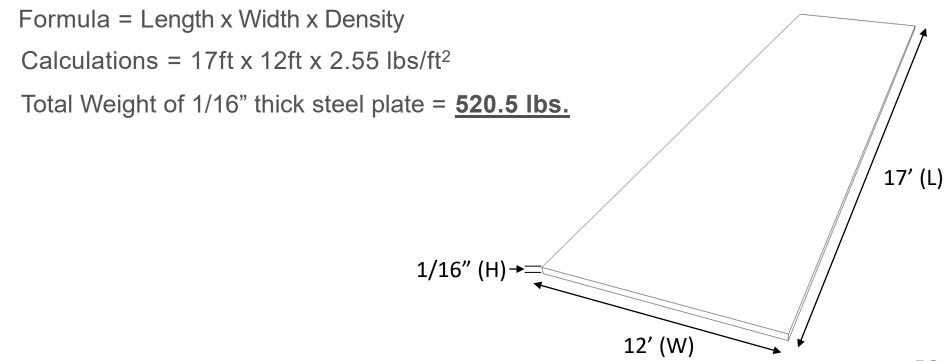
Weight = Area (FT^2) x weight in LBS/ FT^2 Weight = L x W x weight in LBS/ FT^2

Weight = $3 \text{ft x } 5.5 \text{ ft x } 5.1 \text{ LBS/FT}^2$

Weight = **84.15 LBS**

Weight of Material Chart					
Thickness in inches Steel lbs./ft2					
1/8 5.1					

Sample weight of material chart


Weight of Material Chart					
Thickness in inches	Steel	Lead	Copper	Aluminum	Brass/Bronze
Thickness in inches	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2
1/16	2.55	3.68	2.89	0.86	2.78
1/8	5.1	7.36	5.79	1.72	5.56
3/16	7.65	11.04	8.68	2.58	8.34
1/4	10.2	14.72	11.58	3.44	11.13
5/16	12.75	18.4	14.47	4.3	13.91
3/8	15.3	22.08	17.37	5.16	16.69
7/16	17.85	25.76	20.26	6.02	19.47
1/2	20.4	29.44	23.16	6.88	22.25
9/16	22.95	33.12	26.06	7.74	25.03
5/8	25.5	36.8	28.95	8.6	27.81

This is a sample weight chart of multiple metal alloys by thickness that could be used to calculate the weight of a sheet of material.

Calculating the Weight of a 1/16" thick Sheet of Steel to be used on a Bulkhead

Weight of Material Chart						
Thickness in inches	Steel	Lead	Copper	Aluminum		
	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2		
1/16	2.55	3.68	2.89	0.86		
1/8	5.1	7.36	5.79	1.72		

56

Calculating the weight of a solid object

Calculating the weight of a solid object is quite simple and involves calculating the volume of the object and multiplying it by the density of the material per cubic unit of weight (i.e., weight chart)

For example, let's calculate the weight of a cylinder made of aluminum:

Formula for Volume

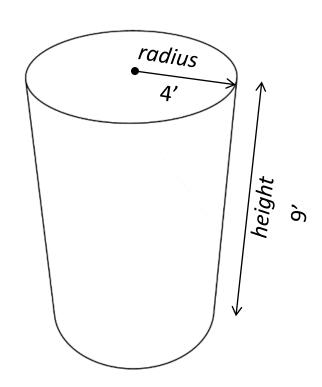
 $V = \P \times r^2 \times h$

Calculations for Volume

 $V = 3.14 \times 4^2 \times 9$

 $V = 3.14 \times 4 \times 4 \times 9$

 $V = 452.16 \text{ ft}^3$


Calculations for Weight (W)

W = Volume x Weight per volume (weight chart)

 $W = 452.16 \text{ ft}^3 \times 165 \text{ lbs./ft}^3$

W = 74,606.4 lbs.

Weight of Material Chart					
Material Weight (volume)					
Aluminum 165 lbs./ft³					

Sample weight of material chart (per volume)

Weight of Material Chart (per volume)					
MATERIAL		WEIGHT	VOLUME		
Brass/Bronze		534	lbs/ft3		
Aluminum		165	lbs/ft3		
Concrete		144	lbs/ft3		
Copper		556	lbs/ft3		
Lead		706	lbs/ft3		
Mud	packed	119	lbs/ft3		
	unpacked	108	lbs/ft3		
Water	sea	64	lbs/ft3		
		8.6	lbs/gallon		
	fresh	62.4	lbs/ft3		
		8.3	lbs/gallon		

This is a sample weight chart of multiple metal alloys by volume that could be used to calculate the weight of a volume of material.

Calculate the weight of a rectangular shape of concrete

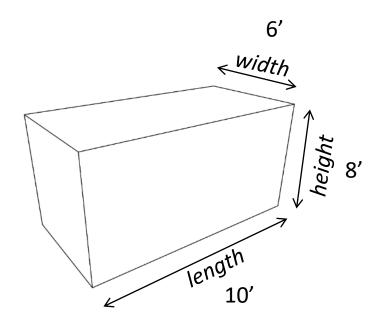
Formula for Volume

 $V = I \times w \times h$

Calculations for Volume

 $V = 10' \times 6' \times 8'$

 $V = 480 \text{ ft}^3$


Formula for Weight (W)

W = Volume x Weight per volume (weight chart)

Calculations for Weight

 $W = 480 ft^3 \times 144 lbs/ft^3$

W = 69,120 lbs.

Weight of Material Chart (per volume)					
MATERIAL WEIGHT VOLUME					
Brass/Bronze		534	lbs/ft3		
Aluminum		165	lbs/ft3		
Concrete		144	lbs/ft3		

Calculate the weight of a solid Aluminum cylinder

Formula for Volume

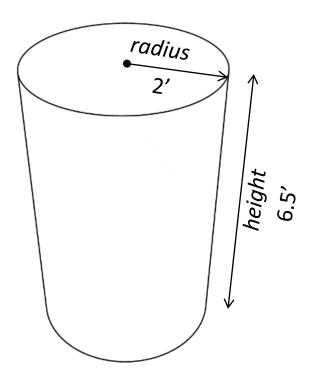
 $V = \mathcal{I} \times r^2 \times h$

Calculations for Volume

 $V = 3.14 \times 2^2 \times 6.5$

 $V = 3.14 \times 2 \times 2 \times 6.5$

 $V = 81.64 \text{ ft}^3$

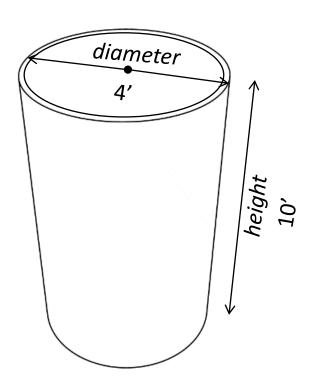

Calculations for Weight (W)

W = Volume x Weight per volume (weight chart)

 $W = 81.64 \, ft^3 \times 165 \, lbs./ft^3$

W = 13,470.6 lbs.

Weight of Material Chart (per volume)					
MATERIAL WEIGHT VOLUME					
Brass/Bronze		534	lbs/ft3		
Aluminum		165	lbs/ft3		
Concrete		144	lbs/ft3		


Calculating the Weight of a 1/16" thick Copper Pipe

Formula = \P x Diameter x Height x Density

Calculations = $3.14 \times 4ft \times 10ft \times 2.89 \text{ lbs/ft}^2$

Total Weight of 1/16" thick copper pipe = 362.98 lbs.

Weight of Material Chart						
Thickness in inches	Steel	Lead	Copper	Aluminum		
	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2		
1/16	2.55	3.68	2.89	0.86		
1/8	5.1	7.36	5.79	1.72		

Calculate the weight of a ½" thick solid Steel plate

Practice problem

Weight Chart

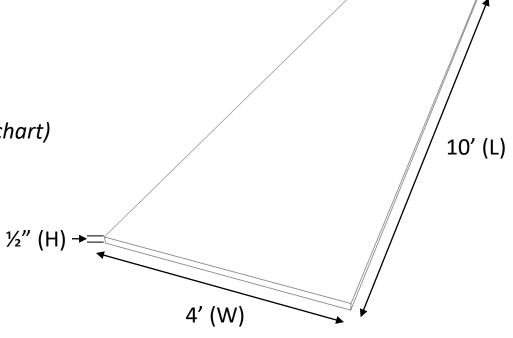
Thickness in inches	Steel	Lead	Copper	Aluminum	Brass/Bronze
	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2
1/2	20.4	29.44	23.16	6.88	22.25

Formula for Area

 $\mathbf{A} = L \times W$

Calculations for Area

A = ____x ____


A = ____

Calculations for Weight (W)

W = Area x Weight per thickness (weight chart)

W = ____x ____x

W =

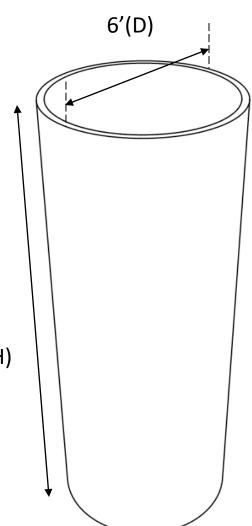
Calculate the weight of a 1/8" thick Steel pipe

Practice problem

Formula for Area

$$\mathbf{A} = \pi * d * h$$

Calculations for Area


Calculations for Weight (W)

W = Area x Weight per thickness (weight chart)

20' (H)

Weight Chart

Weight of Material Chart					
Thickness in inches	Steel	Lead	Copper	Aluminum	Brass/Bronze
Thickness in inches	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2	lbs/ft2
1/16	2.55	3.68	2.89	0.86	2.78
1/8	5.1	7.36	5.79	1.72	5.56

